Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(52): 18436-18448, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33127646

RESUMO

Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD ) as low as 0.8 nm We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule-positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Molécula de Adesão da Célula Epitelial/imunologia , Proteínas de Membrana/imunologia , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Cricetinae , Cricetulus , Biblioteca Gênica , Humanos , Células Jurkat , Ligação Proteica
2.
J Biol Chem ; 294(51): 19616-19634, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31727737

RESUMO

Therapeutic mAbs are used to manage a wide range of cancers and autoimmune disorders. However, mAb-based treatments are not always successful, highlighting the need for a better understanding of the factors influencing mAb efficacy. Increased levels of oxidative stress associated with several diseases are counteracted by the activities of various oxidoreductase enzymes, such as thioredoxin (Trx), which also reduces allosteric disulfide bonds in proteins, including mAbs. Here, using an array of in vitro assays, we explored the functional effects of Trx-mediated reduction on the mechanisms of action of six therapeutic mAbs. We found that Trx reduces the interchain disulfide bonds of the mAbs, after which they remain intact but have altered function. In general, this reduction increased antigen-binding capacity, resulting in, for example, enhanced tumor necrosis factor (TNF) neutralization by two anti-TNF mAbs. Conversely, Trx reduction decreased the antiproliferative activity of an anti-tyrosine kinase-type cell-surface receptor HER2 mAb. In all of the mAbs, Fc receptor binding was abrogated by Trx activity, with significant loss in both complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) activity of the mAbs tested. We also confirmed that without alkylation, Trx-reduced interchain disulfide bonds reoxidize, and ADCC activity is restored. In summary, Trx-mediated reduction has a substantial impact on the functional effects of an mAb, including variable effects on antigen binding and Fc function, with the potential to significantly impact mAb efficacy in vivo.


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/química , Tiorredoxinas/química , Sítio Alostérico , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos/química , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Linfócitos B/citologia , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células , Proteínas do Sistema Complemento , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/química , Imunoglobulina G/farmacologia , Cinética , Leucócitos Mononucleares/citologia , Estresse Oxidativo , Oxigênio/química , Proteínas Tirosina Quinases/química , Receptor ErbB-2/química , Trastuzumab/química , Trastuzumab/farmacologia
3.
J Pharm Biomed Anal ; 143: 188-198, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28605680

RESUMO

Traditional antibody dependent cellular cytotoxicity (ADCC) assays use donor derived natural killer (NK) or peripheral blood mononuclear cells, but donor genetic variability and the technically challenging nature of the assay means that alternative in vitro assay formats are required. We explored the utility of two reporter gene cell lines, the J2 and J9, as surrogate effector cells for ADCC assays. Both express the ADCC relevant Fcγ receptor CD16, crosslinking of which leads to firefly luciferase expression. For anti-CD20 rituximab and anti-HER2 trastuzumab (both IgG1 monoclonal antibodies, mAbs) a dose dependent firefly luciferase response was observed exclusively in the presence of their respective targets, representing the molecular interaction which potentiates ADCC activity. Importantly, both surrogate effector and NK cell based assays gave statistically similar values for rituximab ADCC activity. Increased engagement with target cell bound mAbs was determined to be cytotoxic for the J2 and J9 cell lines at the assay end point (at which luciferase expression is measured). However, use of the J9 cells containing the constitutively expressed renilla luciferase gene enabled data normalisation and corrected for fluctuations in both cell number and viability providing an advantage over currently available surrogate effector cell-lines. Abrogated ADCC activity with IgG4 mAbs, but enhanced activity with an IgG1 non-fucosylated mAb, was seen with the J9 cell line, as expected. Additionally, two rituximab products (biosimilars in development) with similar binding by flow cytometry, N-glycan profiles using HPLC and CD16 binding by surface plasmon resonance showed comparable ADCC activity to Mabthera. The ADCC activity of another anti-CD20 mAb, ofatumumab, reported only with primary cell based assays to date was also measured. This is the first report of a dual reporter gene based ADCC assay.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Medicamentos Biossimilares , Linhagem Celular , Humanos , Leucócitos Mononucleares , Receptores de IgG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...